5.10 References
Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: personalization and customization of services. Applied Computing & Informatics, 15(2), 94–101. https://doi.org/10.1016/j.aci.2018.05.004
Awotunde, J. B., Jimoh, R. G., Oladipo, I. D., Abdulraheem, M., Jimoh, T. B., & Ajamu, G. J. (2021). Big data and data analytics for an enhanced COVID-19 epidemic management. In D. Oliva, S. A. Hassan, & A. Mohamed (eds), Artificial intelligence for COVID-19: Vol. 358: Studies in systems, decision and control. Springer. https://doi.org/10.1007/978-3-030-69744-0_2
Blackett, G. (2013). Analytics network O.R. & analytics [Online].
Borges do Nascimento, I. J., Marcolino, M. S., Abdulazeem, H. M., Weerasekara, I., Azzopardi-Muscat, N., Gonçalves, M. A., & Novillo-Ortiz, D. (2021). Impact of big data analytics on people’s health: overview of systematic reviews and recommendations for future studies. Journal of Medical Internet Research, 23(4), e27275.
Chen, J. F., Sun, L. L., Guo, C. H., & Xie, Y. M. (2020a). A fusion framework to extract typical treatment patterns from electronic medical records. Artificial Intelligence in Medicine, 103, 101782. https://doi.org/10.1016/j.artmed.2019.101782
Chen, P. T., Lin C. L., & Wu, W. N. (2020b). Big data management in healthcare: adoption challenges and implications. International Journal of Information Management, 53(102078).
Chong, D., & Hui, S. (2015). Big data analytics: a literature review. Journal of Management Analytics, 2(3), 175–201. doi:10.1080/23270012.2015.1082449
Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data, 6(1), 1–25. https://doi.org/10.1186/s40537-019-0217-0
Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), 341–361. https://doi.org/10.1111/1467-8551.12355
Fan, W., Bifet, A., & Yang, Q. (2013, August 11). BigMine ‘13: Proceedings of 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. Chicago.
Galetsi, P., & Katsaliaki, K. (2020). A review of the literature on big data analytics in healthcare. Journal of the Operational Research Society, 71(10), 1511–1529. https://doi.org/10.1080/01605682.2019.1630328
Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC Digital Universe Study. EMC. http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. Proceedings of 19th ACM Symposium on Operating Systems Principles, pp. 29–43.
Guo, C., & Chen, J. (2023). Big data analytics in healthcare. In Y. Nakamori (ed.), Knowledge technology and systems: Vol. 34: Translational systems sciences. Springer. https://doi.org/10.1007/978-981-99-1075-5_2
Hasan, I., Dhawan, P., Rizvi, S. A. M., & Dhir, S. (2023). Data analytics and knowledge management approach for COVID-19 prediction and control. International Journal of Information Technology: an official journal of Bharati Vidyapeeth’s Institute of Computer Applications and Management, 15(2), 937–954. https://doi.org/10.1007/s41870-022-00967-0
Holmlund, M., Van Vaerenbergh, Y., Ciuchita, R., Ravald, A., Sarantopoulos, P., Ordenes, F. V., & Zaki, M. (2020). Customer experience management in the age of big data analytics: a strategic framework. Journal of Business Research, 116, 356–365. https://doi.org/10.1016/j.jbusres.2020.01.022
Husamaldin, L., & Saeed, N. (2020). Big data analytics correlation taxonomy. Information (Basel), 11(1), 17. https://doi.org/10.3390/info11010017
Ingenix. (2006). Five essentials for evaluating predictive modeling solutions. http://www.optuminsight.com/~/media/Ingenix/Resources/White%20Papers/5EssentialsforEvaluatingPM Solutions.pdf
Kepner, J., Gadepally, V., Michaleas, P., Schear, N., Varia, M., Yerukhimovich, A., & Cunningham, R. K. (2014). Computing on masked data: a high-performance method for improving big data veracity. arXiv.org. https://doi.org/10.48550/arxiv.1406.5751
Kibbe, D. C., & Kuraitis, V. (2012, August 29). The power of small. The Health Care Blog. http://thehealthcareblog.com/blog/2012/08/29/small data/
Mbunge, E., Akinnuwesi, B., Fashoto, S. G., Metfula, A. S., & Mashwama, P. (2021). A critical review of emerging technologies for tackling COVID-19 pandemic. Human Behavior and Emerging Technologies, 3(1), 25–39
Mehta, M., Passi, K., Chatterjee, I., & Patel, R. (2022). Knowledge modelling and big data analytics in healthcare: advances and applications (1st ed.). CRC Press.
Murphy, K. (2013, August 29). What about healthcare must change for analytics to flourish?http://ehr intelligence.com/2013/08/29/what -about-healthcare-must-change-for -analytics-to-flourish/
Pastorino, R., De Vito, C., Migliara, G., Glocker, K., Binenbaum, I., Ricciardi, W., & Boccia, S. (2019). Benefits and challenges of big data in healthcare: an overview of the European initiatives. European Journal of Public Health, 29, Supplement 3, 23–27. https://doi.org/10.1093/eurpub/ckz168
Rajaraman, V. (2016). Big data analytics. Reson, 21, 695–716. https://doi.org/10.1007/s12045-016-0376-7
Ranjan, J. (2019). The 10 Vs of big data framework in the context of 5 industry verticals. Productivity (New Delhi), 59(4), 324–342.
Reddy, R. C., Bhattacharjee, B., Mishra, D. et al. (2022). A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy. Information Systems and e-Business Management, 20, 223–255. https://doi.org/10.1007/s10257-022-00550-x
Saeed, N., & Husamaldin, L. (2021). Big data characteristics (V’s) in industry.
Iraqi Journal of Industrial Research, 8(1). http://dx.doi.org/10.53523/ijoirVol8I1ID52
Salvi, E., Bosoni, P., Tibollo, V., Kruijver, L., Calcaterra, V., Sacchi, L., Bellazzi, R., & Larizza, C. (2019). Patient-generated health data integration and advanced analytics for diabetes management: the AID-GM Platform. Sensors, 20(1), 128. https://doi.org/10.3390/s20010128
Saranya, P., & Asha P. (2019). Survey on big data analytics in health care. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). 10.1109/icssit46314.2019.8987882
Schaeffer, C., Booton, L., Halleck, J., Studeny, J., & Coustasse, A. (2017). Big data management in US hospitals: benefits and barriers. Health Care Manager, 36(1), 87–95. https://doi.org/10.1097/HCM.0000000000000139
Sheela, M. S., & Arun, C. A. (2022). Hybrid PSO-SVM algorithm for Covid-19 screening and quantification. International Journal of Information Technology, 12, 1–8
Singh, R. K., Agrawal, S., Sahu, A., & Kazancoglu, Y. (2023). Strategic issues of big data analytics applications for managing health-care sector: a systematic literature review and future research agenda. The TQM Journal, 35(1), 262–291. https://doi.org/10.1108/TQM-02-2021-0051
Suresh, S. (2016). Big data and predictive analytics. Pediatric Clinics of North America, 63(2), 357–366. https://doi.org/10.1016/j.pcl.2015.12.007
Tan, S. S., Gao, G., & Koch, S. (2015). Big data and analytics in healthcare. Methods of Information in Medicine, 54(6), 546–547. https://doi.org/10.3414/ME15-06-1001
Taylor, J. (2010). Transforming healthcare delivery with analytics: Improving outcomes and point-of-care decisioning. http://www.decision managementsolutions.com/attachments /149_TransformingHealthcareDelivery Analytics.pdf
Terry, K. (2012, August 31). Think small data before big data, healthcare gurus argue. Information Week. http://www.informationweek.com/healthcare/clinical-information -systems/think-small-data-before-big-data-healthcare-gurus-argue/d/d-id/1106078
Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things, 11, 100222.
Watson, H. J. (2014). Tutorial: Big data analytics: concepts, technologies, and applications. Communication of the Association for Information Systems, 34, Article 65, 124–168.
Wills, M. J. (2014). Decisions through data: analytics in healthcare. Journal of Healthcare Management, 59(4), 254–262.
World Health Organization. (2021). WHO using big data to inform healthcare: opportunities, challenges and considerations. https://www.who.int/europe/news/item/26-05-2021-using-big-data-to-inform-health-care-opportunities-challenges-and-considerations
Xu, F., Zheng, H., Jiang, H., Shao, W., Liu, H., & Zhou, Z. (2019). Cost-effective cloud server provisioning for predictable performance of big data analytics. In IEEE Transactions on Parallel and Distributed Systems, 30(5), 1036–1051. doi:10.1109/TPDS.2018.2873397
Zhao-hong, Y., Hui-yu, W., Bin, Z., Zhi-he, H., & Wan-lin, L. (2018). A literature review on the key technologies of processing big data. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 202–208. doi:10.1109/ICCCBDA.2018.8386512
Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang, Z., & Xin, J. (2020). Predicting Covid-19 in China using hybrid AI model. IEEE Transactions on Cybernetics, 5(7), 2891–2904. https://doi.org/10.1109/TCYB.2020.2990162