
Simulation and 
Distributions 

Calculating the 
theoretical probability 
for the birthday paradox 

It’s much easier to 
calculate three 

misses in a row than 
it is to separately 

calculate the 
probability of 1, 2 
and 3 made shots. 

We often use simulation to estimate probabilities because it is 
difficult to work out the theoretical probability, however we can 
also use simulation to support a theoretical calculation.  For the 
birth month and birthday problems, we can apply what we’ve 
learnt when studying probability rules.	   
 
 

The logic of complementary probabilities  

First, we can reframe the way we think of there being 
"at least one match". You might have noticed in 
running birth month trials that in some cases you had 
more than one match, e.g., if we have (3, 6, 7, 3, 3) or 
(2, 2, 7, 7, 12). Whether there are two pairs or three 
people with the same birth month, we count it as a 
single 'success' as long as there's at least one pair 
with the same birthday.   
 
This might remind you of the problems involving a 
basketballer shooting free-throws.  The probability of 
hitting at least one free-throw out of three is the 
complementary probability of hitting no free throws 
– and it’s much easier to calculate three misses in a 
row than it is to separately calculate the probability of 
1, 2 and 3 made shots. 
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As the second person 
joins, they just have 

to have a different 
birthday to the first 

person. 

In the birthday and birth month problems, we can 
hence look at the probability of everyone in the 
sample being born in different months - i.e., what is 
the probability of no matches?   The complement of 
this will be the probability that we’re after.   
 
Let's consider each person joining our sample as a 
probabilistic event.  
 
As the first person joins, there is a 100% chance of 
there being no match (since there’s only one person 
in the group so far).  
 
As the second person joins, they just have to have a 
different birthday to the first person.  Whichever 
month the first person was born in, there’ll be 11 
months leftover.  So the probability of there being no 
matches so far is 

1 ×
11
12

=
11
12
	. 

 
When the third person joins, it needs to already be 
the case that the first two didn’t match (which has 
probability 11/12) and then there will be 10 months 
leftover – as long as the third person is born in one of 
those 10 months, there still won’t be a match.  So now 
the probability is 
 

1 ×
11
12

×
10
12

= 	
110
144

=
55
72
	. 
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We could follow the progress of this calculation using 
a tree diagram. 

 
Then continuing on to the fourth and fifth person, 
we’ll have 9 months and 8 months leftover 
respectively.  The final calculation for the probability 
of no matches is hence:  

1 ×
11
12 ×

10
12 ×

9
12 ×

8
12 =

7920
20736 ≈ 0.382	. 

 
Finally, to work out what the probability of there being 
at least one pair who are born in the same month, we 
can subtract the probability of no matches from 1.  
Hence we have 1 – 0.382 = 0.618 as our probability 
(correct to 3 decimal places).    
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We can apply the 
same logic to the 

birthday paradox. 

How does this compare to our experimentation? 
 
Using the R code from the unit site, the histogram you 
obtain (for 100 simulations of 1000 trials) might look 
something like this, 
 

 
 
which does seem to centre around our theoretical 
calculation, even if there is some variation. 
 

The birthday paradox  

We can apply the same logic to the birthday paradox, 
however now we will have 365 days instead of 12 
months, and 23 people instead of 5.  The calculation 
will be: 

1 ×
364
365

×
363
365

×
362
365

× … 
and so on. 
 
It might take you a little while to enter this into your 
calculator and reach the result, though. 
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As well as 
conducting our 

simulations, 
programming can be 
useful for theoretical 

calculations.  

Programming to the rescue 

As well as conducting our simulations, programming 
can also be useful for theoretical calculations such as 
the one above.  The calculation is similar to what we’d 
have for a geometric progression, except that the 
ratio changes for each term. 
 
In Scratch, the following code could be used. 
 

 
(Scratch CC-BY-SA) 

 
The probability starts as 1, then as each person enters 
the group, we multiply that probability by 365 minus 
the number of people already there, divided by 365.  
When person = 22, we’ll be multiplying by (365 – 22) 
and then once person is increased to 23 the loop 
stops.  At the end, we subtract this probability from 1.   
 
To explore more, you might like to calculate the 
theoretical value for 10 people, 20 people and so on, 
then see how these compare to your simulated 
estimates. 

Scratch (https://scratch.mit.edu), 
its images and environment are 
used under a CC-BY-SA 2.0 License 
(https://creativecommons.org/lice
nses/by-sa/2.0/) 
 
All other images and text by 
Simon James (Deakin University) 
CC-BY-NC 4.0 
(https://creativecommons.org/lice
nses/by-nc/4.0/) 


