[Pythagoras's Theorem - an algebraic proof]

This proof of Pythagoras's theorem uses the algebraic polynomial expansion. We start with a square, which has a length (a+b). The area of the square is hence:

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

(and remember it's not just $\mathrm{a}^{2}+\mathrm{b}^{2}$, a mistake that many keep on making).

Now if we connect the points where a and b connect, we should be able to verify that what we have in the middle here is a square that has a length the same as the hypotenuse.

By rearranging the triangles, we can work out that the area is 2ab, and so subtracting this from the expansion of $(a+b)^{\wedge} 2$, we are left with $a^{\wedge} 2+b^{\wedge} 2$, and so we have Pythagoras's theorem $a^{\wedge} 2+b^{\wedge} 2=$ $c^{\wedge} 2$.

