[Triangle algebra]

Let's place our triangle with lengths a, b, and c on the ground so that c is our base. To calculate the area, we just need to work out the height it reaches, so we can draw in this line and we'll call it z . So z is perpendicular to c .

Now let's introduce two new values, x and y which represent the two parts of c that fall either side of the line. From Pythagoras's theorem, we have:

$$
\begin{aligned}
& x^{2}+z^{2}=a^{2} \\
& y^{2}+z^{2}=b^{2}
\end{aligned}
$$

and we also know that $\mathrm{x}+\mathrm{y}=\mathrm{c}$.

Now the tricky thing here is to rearrange these bits of information so that we can work out z , just from knowing a, b, c.

Now of course, if we can find x or y, we can also find z, but the key is that we need to be able to find any one of them, only knowing a, b and c .

As it turns out, we can do this, and one way is via the value of x.

First, we know that using pythagoras's theorem, the height as determined from a and x needs to be the same as the height determined from b and y. So that gives us:

$$
b^{2}-y^{2}=a^{2}-x^{2}
$$

and we can rearrange this so that we have the parts we'll know on the right (remember that we're assuming we already know a, b and c).

$$
x^{2}-y^{2}=a^{2}-b^{2}
$$

Now this is starting to look promising, because since we know x and y add together to make c, we can actually express y in terms of c (which we'll know and x)

So $x+y=c, y=c-x$, and from this:

$$
a^{2}-b^{2}=x^{2}-(c-x)^{2}
$$

We can expand these brackets:

$$
\begin{gathered}
a^{2}-b^{2}=x^{2}-\left(c^{2}-2 c x+x^{2}\right) \\
a^{2}-b^{2}=x^{2}-c^{2}+2 c x-x^{2}
\end{gathered}
$$

and this is looking better and better because now we can eliminate $x^{\wedge} 2$. And we're just left with

$$
a^{2}-b^{2}=-c^{2}+2 c x
$$

which we'll rearrange

$$
\begin{aligned}
& a^{2}-b^{2}+c^{2}=2 c x \\
& \frac{a^{2}-b^{2}+c^{2}}{2 c}=x
\end{aligned}
$$

So this means that if we know a, b, and c, we'll be able to find x straight away, and from there it's only one more step to find the value of z and hence be able to calculate the area.

