The majority of conversions preserve ratio. For example, 1 inch is equal to $2.54 \mathrm{~cm}, 2$ inches is equal to $2 \times 2.54=5.08 \mathrm{~cm}$ and the ratio is the same. Expressed using fractions notation:
$1 / 2.54=2 / 5.08$

If we want to know how many inches or how many cm a length is, we can write an equation with an unknown. For example, if we want to know how many cm there are in 12 inches
$1 / 2.54=12 / x$
and now we can solve for x
$x 1 / 2.54=12$
$x=12 \times 2.54=\ldots$
On the other hand if we want to know how many inches there are in 30 cm , we would have
$1 / 2.54=x / 30$
$30 \times 1 / 2.54=x=\ldots$

So the key is just keeping track of the ratio we're preserving. Of course, we can express the ratio in a different form too. In the example where we want to know how many cm there are in 12 inches, we can say that the ratio of inches, $1 / 12$ will be the same as the ratio of cm $2.54 / x$, and you'll note that the equation will rearrange equivalently to before.
$1 / 12=2.54 / x$
$x 1 / 12=2.54$
$x=2.54 \times 12$

How about some other conversions that preserve ratio?
1 Australian dollar is 0.7662 US dollars. How much in AUD is a book from the US that costs 35.99 USD?
$1 / 0.7662=x / 35.99$
or
$1 / x=0.7662 / 35.99$

In fact if there's any kind of ratio relationship going on, we can set up this kind of equation.

